PCA

Machine Learning

Hamid R Rabiee – Zahra Dehghanian Spring 2025

Dimensionality Reduction: <u>Feature Selection vs. Feature Extraction</u>

Feature selection

Select a subset of a given feature set

Feature extraction

A linear or non-linear transform on the original feature space

$$\begin{bmatrix} x_1 \\ \vdots \\ x_d \end{bmatrix} \rightarrow \begin{bmatrix} x_{i_1} \\ \vdots \\ x_{i_{d'}} \end{bmatrix}$$
Feature
Selection

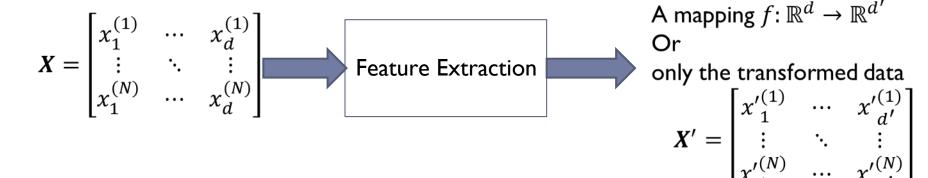
(d' < d)

$$\begin{bmatrix} x_1 \\ \vdots \\ x_d \end{bmatrix} \to \begin{bmatrix} y_1 \\ \vdots \\ y_{d'} \end{bmatrix} = f \begin{pmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_d \end{bmatrix} \end{pmatrix}$$

Feature Extraction

Feature Extraction

Unsupervised feature extraction:



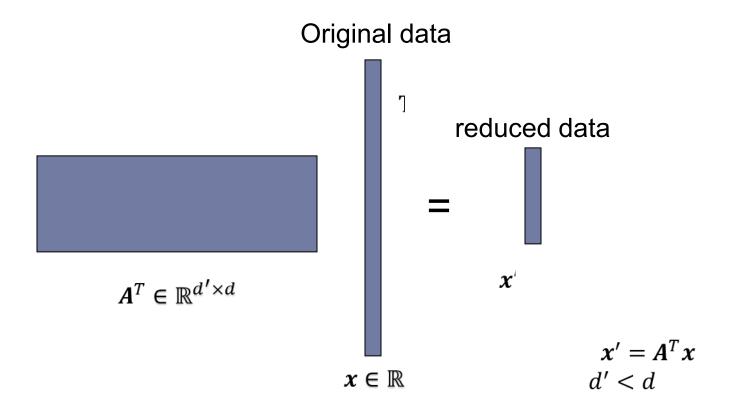
Supervised feature extraction:

Unsupervised Feature Reduction

- Visualization and interpretation: projection of high-dimensional data onto 2D or 3D.
- Data compression: efficient storage, communication, or and retrieval.
- Pre-process: to improve accuracy by reducing features
 - As a preprocessing step to reduce dimensions for supervised learning tasks
 - Helps avoiding overfitting
- Noise removal
 - E.g, "noise" in the images introduced by minor lighting variations, slightly different imaging conditions,

Linear Transformation

For linear transformation, we find an explicit mapping $f(x) = A^T x$ that can transform also new data vectors.



Linear Transformation

Linear transformation are simple mappings

$$\mathbf{x'} = \mathbf{A}^T \mathbf{x} \quad (\mathbf{x'}_j = \mathbf{a}_j^T \mathbf{x}) \quad j = 1, ..., d$$

$$\mathbf{A} = \begin{bmatrix} a_{11} & \cdots & a_{1d} \\ \vdots & \ddots & \vdots \\ a_{d1} & \cdots & a_{dd'} \end{bmatrix}$$

$$\mathbf{a}_{1} \qquad \mathbf{a}_{d'}$$

Linear Dimensionality Reduction

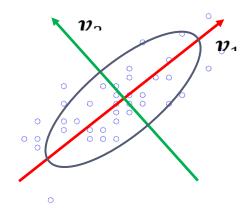
- Unsupervised
 - Principal Component Analysis (PCA)
 - Singular Value Decomposition (SVD)
 - Independent Component Analysis (ICA)
 - Multi Dimensional Scaling (MDS)
 - Canonical Correlation Analysis (CCA)
 - ?

Principal Component Analysis (PCA)

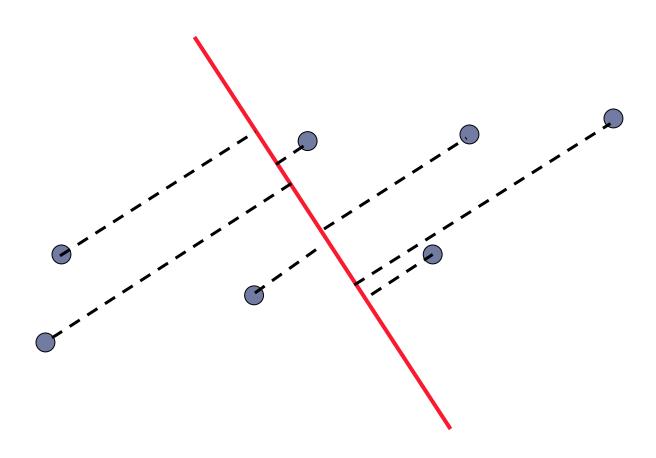
- Also known as Karhonen-Loeve (KL) transform
- Principal Components (PCs): orthogonal vectors that are ordered by the fraction of the total information (variation) in the corresponding directions
 - Find the directions at which data approximately lie

Principal components

If data has a Gaussian distribution $N(\mu, \Sigma)$, the direction of the largest variance can be found by the eigenvector of Σ that corresponds to the largest eigenvalue of Σ

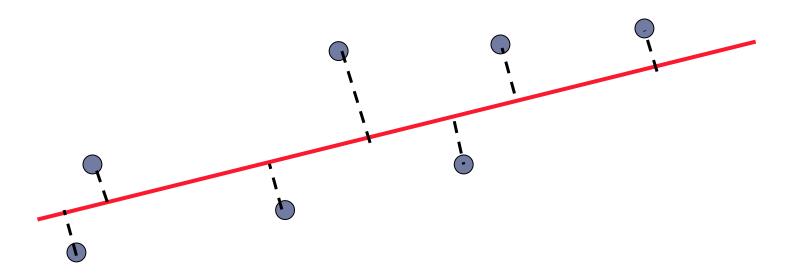


Example: random direction



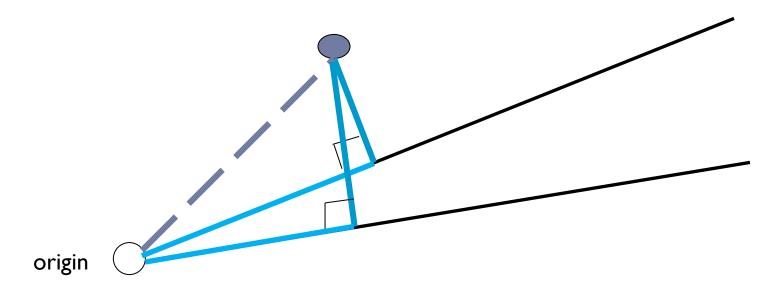
Example: principal component

Find the direction that preserves important aspect of data



Least Squares Error and Maximum Variance Views Are Equivalent (1-dim Interpretation)

- When data are mean-removed:
 - Minimizing sum of square distances to the line is equivalent to maximizing the sum of squares of the projections on that line (Pythagoras).

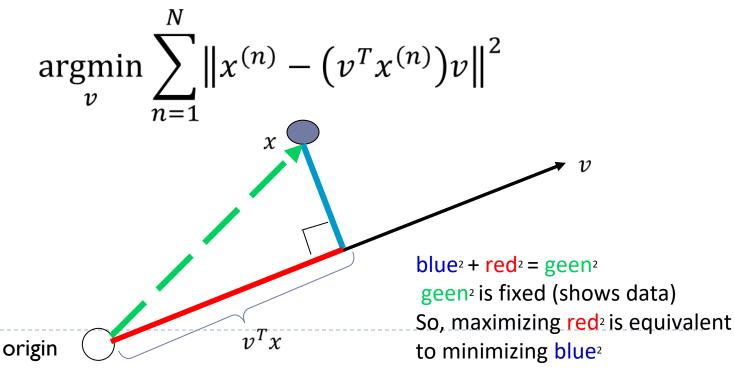


Two interpretations (for mean centered data)

Maximum variance subspace

$$\underset{v}{\operatorname{argmax}} \frac{1}{N} \sum_{n=1}^{N} \left(v^{T} x^{(n)} \right)^{2} = v^{T} S v$$

Minimum reconstruction error



13

Principal Component Analysis (PCA)

- Goal: reducing the dimensionality of the data while preserving important aspects of the data
- Two equal views: find directions for which
 - the variation presents in the dataset is as much as possible.
 - the reconstruction error is minimized.
- PCs can be found as the "best" eigenvectors of the covariance matrix of the data points.

PCA: Steps

- Input: $N \times d$ data matrix X (each row contain a d dimensional data point)
 - $\overline{\boldsymbol{x}} = \frac{1}{N} \sum_{i=1}^{N} \boldsymbol{x}^{(i)}$

 - $S = \frac{1}{N} \widetilde{X}^T \widetilde{X}$ (Covariance matrix)
 - ightharpoonup Calculate eigenvalue and eigenvectors of S
 - Pick d' eigenvectors corresponding to the largest eigenvalues and put them in the columns of $A = [v_1, ..., v_{d'}]$
 - X' = XA First PC d'-th PC

Covariance Matrix

?

$$\boldsymbol{\mu}_{\boldsymbol{x}} = \begin{bmatrix} \mu_1 \\ \vdots \\ \mu_d \end{bmatrix} = \begin{bmatrix} E(x_1) \\ \vdots \\ E(x_d) \end{bmatrix}$$

$$\Sigma = E[(x - \mu_x)(x - \mu_x)^T]$$

Covariance Matrix

?

$$\boldsymbol{\mu}_{\boldsymbol{x}} = \begin{bmatrix} \mu_1 \\ \vdots \\ \mu_d \end{bmatrix} = \begin{bmatrix} E(x_1) \\ \vdots \\ E(x_d) \end{bmatrix}$$

$$\Sigma = E[(x - \mu_x)(x - \mu_x)^T]$$

ML estimate of covariance matrix from data points $\left\{x^{(i)}\right\}_{i=1}^N$:

$$S = \frac{1}{N} \sum_{i=1}^{N} (x^{(i)} - \overline{x}) (x^{(i)} - \overline{x})^{T} = \frac{1}{N} (\widetilde{X}^{T} \widetilde{X})$$

$$\widetilde{X} = \begin{bmatrix} \widetilde{x}^{(1)} \\ \vdots \\ \widetilde{x}^{(N)} \end{bmatrix} = \begin{bmatrix} x^{(1)} - \overline{x} \\ \vdots \\ x^{(N)} - \overline{x} \end{bmatrix} \qquad \overline{x} = \frac{1}{N} \sum_{i=1}^{N} x^{(i)}$$

Find 1st principal component

lacktriangledown Find vector $oldsymbol{v}_1$ that maximizes sample variance of the projected data:

$$\max_{v_1} \frac{1}{N} \sum_{n=1}^{N} \left(v_1^T x^{(n)} - v_1^T \bar{x} \right)^2$$

$$= \frac{1}{N} \sum_{n=1}^{N} v_1^T \left(x^{(n)} - \bar{x} \right) \left(x^{(n)} - \bar{x} \right)^T v_1$$

$$= v_1^T \left(\frac{1}{N} \sum_{n=1}^{N} \left(x^{(n)} - \bar{x} \right) \left(x^{(n)} - \bar{x} \right)^T \right) v_1 = v_1^T S v_1$$
s. t. $v_1^T v_1 = 1$

Find 1st principal component

?

Find vector v that maximizes sample variance of the projected data:

$$\max_{v} \frac{1}{N} \sum_{n=1}^{N} \left(v_1^T x^{(n)} - v_1^T \bar{x} \right)^2 = v_1^T S v_1$$

$$\text{s.t. } v_1^T v_1 = 1$$

$$L(v_1, \lambda_1) = v_1^T S v_1 + \lambda_1 (1 - v_1^T v_1)$$

$$\frac{\partial L}{\partial v_1} = 0 \Rightarrow 2S v_1 - 2\lambda_1 v_1 = 0$$

$$\Rightarrow S v_1 = \lambda_1 v_1$$

Eigenvector with maximum eigenvalue maximizes the objective

PCA Derivation: Relation between Eigenvalues and Variances

?

$$\Rightarrow var(v_j^T x) = v_j^T S v_j = \lambda_j v_j^T v_j = \lambda_j$$

Variance along j-th eigenvector

Therefore, eigenvector with maximum eigenvalue maximizes the objective

Finding second principal component

?

$$\max_{v_2} v_2^T S v_2$$
s. t. $v_2^T v_2 = 1$
 $v_2^T v_1 = 0$

$$L(v_2, \lambda_2, \alpha) = v_2^T S v_2 + \lambda_2 (1 - v_2^T v_2) - \alpha v_2^T v_1$$

Finding second principal component

?

$$\max_{v_2} v_2^T S v_2$$
s. t. $v_2^T v_2 = 1$
 $v_2^T v_1 = 0$

$$L(v_2, \lambda_2, \alpha) = v_2^T S v_2 + \lambda_2 (1 - v_2^T v_2) - \alpha v_2^T v_1$$

Finding
$$\alpha$$
:
$$\frac{\partial L}{\partial v_2} = 0 \Rightarrow 2Sv_2 - 2\lambda_2v_2 - \alpha v_1 = 0$$
$$\Rightarrow 2v_1^T S v_2 - 2\lambda_2 v_1^T v_2 - \alpha v_1^T v_1 = 0$$
$$\Rightarrow 2\lambda_1 v_1^T v_2 - 2\lambda_2 \times 0 - \alpha = 0$$
$$\Rightarrow \alpha = 0$$

Finding second principal component

$$\max_{v_2} v_2^T S v_2$$
s. t. $v_2^T v_2 = 1$
 $v_2^T v_1 = 0$

$$L(v_2, \lambda_2, \alpha) = v_2^T S v_2 + \lambda_2 (1 - v_2^T v_2) - \alpha v_2^T v_1$$

Finding
$$\lambda_2$$
:
$$\frac{\partial L}{\partial v_2} = 0 \Rightarrow 2Sv_2 - 2\lambda_2v_2 = 0$$
$$\Rightarrow Sv_2 = \lambda_2v_2$$

 v_2 is the eigenvector corresponding to the second largest eigenvalue

Find principal components

For symmetric matrices, there exist eigen-vectors that are orthogonal.

Let $v_1, ... v_d$ denote the eigen-vectors of S such that:

$$v_i^T v_j = 0, \quad \forall i \neq j$$

 $v_i^T v_i = 1, \quad \forall i$

PCA

- **■** Eigenvalues: $\lambda_1 \geq \lambda_2 \geq \lambda_3 \geq \cdots$
 - The first PC v_1 is the the eigenvector of the sample covariance matrix S associated with the largest eigenvalue.
 - The 2nd PC v_2 is the the eigenvector of the sample covariance matrix S associated with the second largest eigenvalue
 - And so on ...

Find eigenvectors with the top k eigenvalues

PCA: Steps

- Input: $N \times d$ data matrix X (each row contain a d dimensional data point)
 - $\overline{\boldsymbol{x}} = \frac{1}{N} \sum_{i=1}^{N} \boldsymbol{x}^{(i)}$

 - $S = \frac{1}{N} \widetilde{X}^T \widetilde{X}$ (Covariance matrix)
 - ightharpoonup Calculate eigenvalue and eigenvectors of S
 - Pick d' eigenvectors corresponding to the largest eigenvalues and put them in the columns of $A = [v_1, ..., v_{d'}]$
 - X' = XA

Reconstruction

?

$$x' = \begin{bmatrix} v_1^T x \\ \vdots \\ v_{d'}^T x \end{bmatrix}$$

$$A = [v_1, ..., v_{d'}]$$

$$x' = A^T (x - \overline{x})$$

$$\Rightarrow \widehat{x} = \overline{x} + Ax' = \overline{x} + AA^T (x - \overline{x})$$

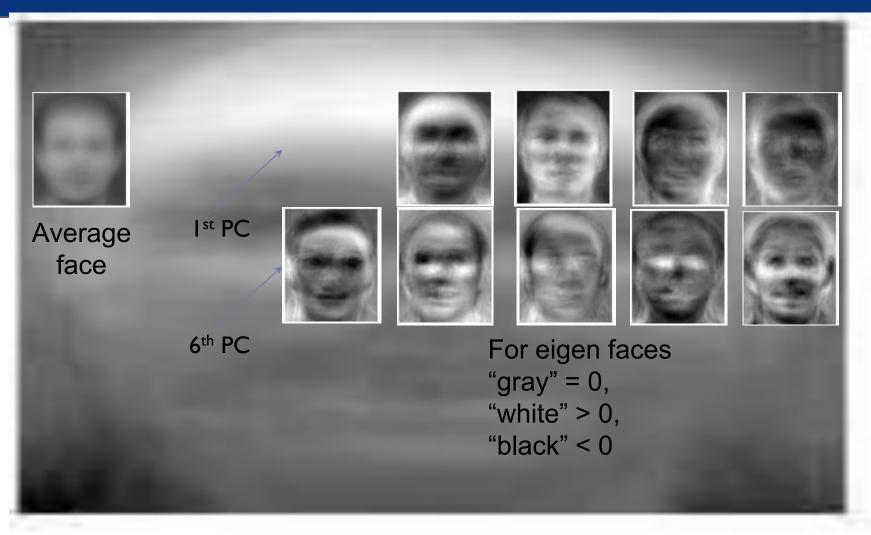
Incorporating all eigenvectors in $A = [v_1, ..., v_d]$: $\Rightarrow \text{ If } d' = d \text{ then } x \text{ can be reconstructed exactly from } x'$

PCA on Faces: "Eigenfaces"

ORL Database

Some Images

PCA on Faces: "Eigenfaces"



PCA on Faces:

x is a $112 \times 92 = 10304$ dimensional vector containing intensity of the pixels of this image and $\tilde{x} = x - \bar{x}$

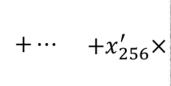
Feature vector= $[x'_1, x'_2, ..., x'_{d'}]$

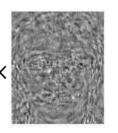
 x_i — The projection of x on the i-th PC

 $\widehat{\boldsymbol{x}}$

$$\widehat{\boldsymbol{x}} = \overline{\boldsymbol{x}} + \sum_{i=1}^{d'} (\boldsymbol{v}_i^T \widetilde{\boldsymbol{x}}) \times \boldsymbol{v}_i$$

 $+x_1' \times$





Average

Face

PCA on Faces: Reconstructed Face

d'=2

d'=4

d'=64

d'=128

d'=256

Original Image

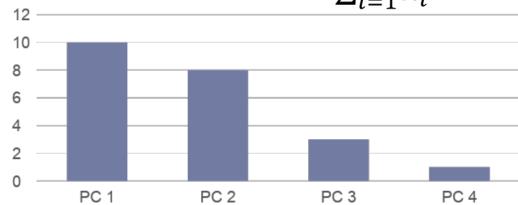
Dimensionality reduction by PCA

- Data may lie near a linear subspace of high-dimensional input space
- Only keep data projections onto principal components with large eigenvalues

Plot of the eigenvalues (or variances of principal components) against their indices. $\nabla d'$

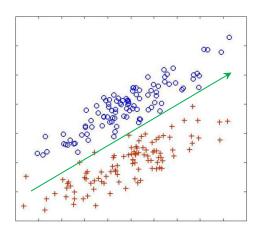
 $\frac{\sum_{i=1}^{d} \lambda_i}{\sum_{i=1}^{d} \lambda_i} \times 100$

variance



Unsupervised feature extraction drawback

- PCA drawback: An excellent information packing transform does not necessarily lead to a good class separability.
 - The directions of the maximum variance may be useless for classification purpose



PCA vs. LDA

- Although LDA often provide more suitable features for classification tasks, PCA might outperform LDA in some situations:
 - When there are many unlabeled data while no or small amount of labeled data
 - when the number of samples per class is small (overfitting problem of LDA)
 - when the number of the desired features is more than C-1
 - when the training data non-uniformly sample the underlying distribution
- Semi-supervised feature extraction
 - ▶ E.g., PCA+LDA, Regularized LDA, Locally FDA (LFDA)

PCA: Summary

- Global optimum is found by eigenvector method
- No parameter tuning
- However, it is limited to:
 - using second order statistics
 - limited to linear projections

Resources

C. Bishop, "Pattern Recognition and Machine Learning", Chapter 12.