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Dimensionality Reduction:

Feature Selection vs. Feature Extraction

฀ Feature selection

฀ Select a subset of a given feature set

฀ Feature extraction

฀ A linear or non-linear transform on the original feature space
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Feature 
Extraction



Feature Extraction
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฀ Unsupervised feature extraction:

฀ Supervised feature extraction:

Feature Extraction

Feature Extraction



Unsupervised Feature Reduction
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฀ Visualization and interpretation: projection of high-
dimensional data onto 2D or 3D.

฀ Data compression: efficient storage, communication, or
and retrieval.

฀ Pre-process: to improve accuracy by reducing features

฀ As a preprocessing step to reduce dimensions for supervised
learning tasks

฀ Helps avoiding overfitting

฀ Noise removal

฀ E.g, “noise” in the images introduced by minor lighting
variations, slightly different imaging conditions,



Linear Transformation
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฀

Original data

reduced data

=



Linear Transformation
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฀ Linear transformation are simple mappings



Linear Dimensionality Reduction
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฀ Unsupervised

฀ Principal Component Analysis (PCA)

฀ Singular Value Decomposition (SVD)

฀ Independent Component Analysis (ICA)

฀ Multi Dimensional Scaling (MDS)

฀ Canonical Correlation Analysis (CCA)

฀ …



Principal Component Analysis (PCA)
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฀ Also known as Karhonen-Loeve (KL) transform

฀ Principal Components (PCs): orthogonal vectors that are
ordered by the fraction of the total information (variation) in
the corresponding directions

฀ Find the directions at which data approximately lie



Principal components
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฀



Example: random direction
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Example: principal component
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฀ Find the direction that preserves important aspect of data



Least Squares Error and Maximum Variance 

Views Are Equivalent (1-dim Interpretation)

฀ When data are mean-removed:

฀ Minimizing sum of square distances to the line is equivalent to
maximizing the sum of squares of the projections on that line
(Pythagoras).
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origin



Two interpretations (for mean centered data)

13

฀

origin

blue2 + red2 = geen2

geen2 is fixed (shows data) 

So, maximizing red2 is equivalent 

to minimizing blue2



Principal Component Analysis (PCA)
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฀ Goal: reducing the dimensionality of the data while
preserving important aspects of the data

฀ Two equal views: find directions for which

฀ the variation presents in the dataset is asmuch as possible.

฀ the reconstruction error is minimized.

฀ PCs can be found as the “best” eigenvectors of the
covariance matrix of the data points.



PCA: Steps
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฀

First PC d’-th PC



Covariance Matrix
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฀



Covariance Matrix
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฀

Mean-centered data



Find 1st principal component
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฀



Find 1st principal component
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฀



PCA Derivation: Relation between 

Eigenvalues and Variances
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฀

Variance along j-th eigenvector



Finding second principal component
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฀



Finding second principal component
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฀



Finding second principal component
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Find principal components
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PCA
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PCA: Steps
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฀

First PC d’-th PC



Reconstruction
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PCA on Faces: “Eigenfaces”
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฀ ORL Database

Some Images



PCA on Faces: “Eigenfaces”
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For eigen faces

“gray” = 0,

“white” > 0,

“black” < 0

Average

face

1st PC

6th PC



PCA on Faces:
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Average 
Face



PCA on Faces: Reconstructed Face

d'=1 d'=2 d'=4 d'=8 d'=16

d'=32 d'=64 d'=128
Original 

Imaged'=256
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Dimensionality reduction by PCA
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฀ Data may lie near a linear subspace of high-dimensional input
space

฀ Only keep data projections onto principal components with
large eigenvalues

฀ Plot of the eigenvalues (or variances of principal components)
against their indices.

variance



Unsupervised feature extraction drawback
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฀ PCA drawback: An excellent information packing transform
does not necessarily lead to a good class separability.

฀ The directions of the maximum variance may be useless for classification
purpose



PCA vs. LDA
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฀



PCA: Summary
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฀ Global optimum is found by eigenvector method

฀ No parameter tuning

฀ However, it is limited to:

฀ using second order statistics

฀ limited to linear projections



Resources
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฀ C. Bishop, “Pattern Recognition and Machine Learning”,
Chapter 12.


