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Dimensionality Reduction:

Feature Selection vs. Feature Extraction

Feature selection
Select a subset of a given feature set

Feature extraction

A linear or non-linear transform on the original feature space
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Feature Extraction

Unsupervised feature extraction:
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A mapping f: R% — RY

Or
‘ Feature Extraction ‘ only the transformed data
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Supervised feature extraction:

A mapping f: R% - R

Or
‘ Feature Extraction ‘ only the transformed data
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Unsupervised Feature Reduction

Visualization and interpretation: projection of high-
dimensional data onto 2D or 3D.

Data compression: efficient storage, communication, or
and retrieval.

Pre-process: to improve accuracy by reducing features

As a preprocessing step to reduce dimensions for supervised
learning tasks

Helps avoiding overfitting

Noise removal

E.g, “noise” in the images introduced by minor lighting
variations, slightly different imaging conditions,



Linear Transformation

For linear transformation, we find an explicit mapping
f(x) = AT x that can transform also new data vectors.

Original data

reduced data

x =ATx
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Linear Transformation

Linear transformation are simple mappings

X' =A'x (x;:aix) j=1,..d




Linear Dimensionality Reduction

Unsupervised
Principal Component Analysis (PCA)
Singular Value Decomposition (SVD)
Independent Component Analysis (ICA)
Multi Dimensional Scaling (MDS)
Canonical Correlation Analysis (CCA)



Principal Component Analysis (PCA)

Also known as Karhonen-Loeve (KL) transform

Principal Components (PCs): orthogonal vectors that are
ordered by the fraction of the total information (variation) in
the corresponding directions

Find the directions at which data approximately lie



Principal components

¥ If data has a Gaussian distribution N (u, X), the direction of the
largest variance can be found by the eigenvector of X that
corresponds to the largest eigenvalue of X




Example: random direction




Example: principal component

Find the direction that preserves important aspect of data




Least Squares Error and Maximum Variance

Views Are Equivalent (1-dim Interpretation)

When data are mean-removed:

Minimizing sum of square distances to the line is equivalent to
maximizing the sum of squares of the projections on that line
(Pythagoras).
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Two interpretations (for mean centered data)

Maximum variance subspace
N
1 T .. (n))2 T
argmax — (v X ) = v Sv
v N
n=1
» Minimum reconstruction error

N
argmin 2 [ — (vTx(n))vHZ
V' =1

bluez+ red>= geen:
geenzis fixed (shows data)
So, maximizing red2is equivalent

13 origin to minimizing blue:



Principal Component Analysis (PCA)

Goal: reducing the dimensionality of the data while
preserving important aspects of the data

Two equal views: find directions for which
the variation presents in the dataset is as much as possible.

the reconstruction error is minimized.

PCs can be found as the “best’” eigenvectors of the
covariance matrix of the data points.



PCA: Steps

Input: N X d data matrix X (each row contain a d
dimensional data point)

— 1 onN i

X < Mean value of data points is subtracted from rows of X
1 ST . .

S = EXTX (Covariance matrix)

Calculate eigenvalue and eigenvectors of §

Pick d’ eigenvectors corresponding to the largest eigenvalues
and put them in the columns of A = [v,, ...,vfr]

X' =XA
First PC  d’-th PC



Covariance Matrix
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Covariance Matrix
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Find 1st principal component

Find vector v; that maximizes sample variance of the
projected data:
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Find 1st principal component

» Find vector v that maximizes sample variance of the projected data:

N
1 2
max—Z(vlTx(n) —vlx) =vlsv,
v N
n=1
s.t. viv, =1

L(vy,4) = v1Svy + (1 — v{vy)

dL
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= S'Ul = 2,11]1

Eigenvector with maximum eigenvalue maximizes the objective
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PCA Derivation: Relation between

Eigenvalues and Variances

- SvalejvJ -
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Variance along j-th eigenvector

» Therefore, eigenvector with ~maximum eigenvalue
maximizes the objective
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Finding second principal component

max v, Sv,
V2
s.t. vav, =1
viv; =0

L(vy, Ay, ) = v2iSv, + A,(1 — v v,) — avi vy
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Finding second principal component

max v, Sv,

L(vy, Ay, ) = v2iSv, + A,(1 — v v,) — avi vy

Flndlng . —_— = 0 = 251]2 — 2/121)2 - avl — 0
v,

= 2v{ Sv, — 2A,vi v, —aviv, =0
= 24 0{v, — 24, X0 —a =0
>a=20
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Finding second principal component

max v Sv,
V2
s.t. viv, =1
viv, =0

0
L(vy, Ay, a) = viSv, + ,(1 —vivy) —}/ﬁzvl

e dL
Finding 1,: o= 0= 25V, — 24,1, =0
2

= SUZ = /12172

v, is the eigenvector corresponding to the second largest
eigenvalue
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Find principal components

For symmetric matrices, there exist eigen-vectors that
are orthogonal.

» Let v4, ...v; denote the eigen-vectors of S such that:

v?vj=0, Vi#]

T, —
v; v; = 1, Vi
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PCA

Eigenvalues: 1, = A, = A3 = -

The first PC v, is the the eigenvector of the sample covariance
matrix S associated with the largest eigenvalue.

The 2nd PC v, is the the eigenvector of the sample covariance
matrix S associated with the second largest eigenvalue

And so on ...

» Find eigenvectors with the top k eigenvalues
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PCA: Steps

Input: N X d data matrix X (each row contain a d
dimensional data point)

26

— 1 onN i

X < Mean value of data points is subtracted from rows of X
1 ST . .

S = EXTX (Covariance matrix)

Calculate eigenvalue and eigenvectors of §

Pick d’ eigenvectors corresponding to the largest eigenvalues
and put them in the columns of A = [v,, ...,vfr]

X' =XA
First PC  d’-th PC



Reconstruction

v

A= [vl, ...,vdf]
x'=AT(x — x)
>X¥=X+Ax' =x+AAT(x — %)

» Incorporating all eigenvectors in A = [vq, ..., V4]:

= If d’ = d then x can be reconstructed exactly from x’
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PCA on Faces: “Eigenfaces”
ORL Database

Some Images
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PCA on Faces: “Eigenfaces”




PCA on Faces:

x is a 112x92 =10304 dimensional vector
containing intensity of the pixels of this image
andX =x—Xx

Feature vector=[xj, x3, ..., x /]

X, —> The projection of x on the i-th PC

Average
Face
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PCA on Faces: Reconstructed Face

d'=2 d'=4 d'=8 d'=16

Original
- d'=64 d'= 128 d'=256 Image
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Dimensionality reduction by PCA

Data may lie near a linear subspace of high-dimensional input
space

Only keep data projections onto principal components with
large eigenvalues

Plot of the eigenvalues (or variances of principal components)

against their indices. Z
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Unsupervised feature extraction drawback

PCA drawback: An excellent information packing transform
does not necessarily lead to a good class separability.

The directions of the maximum variance may be useless for classification
purpose
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PCA vs. LDA

¥ Although LDA often provide more suitable features for
classification tasks, PCA might outperform LDA in some
situations:

When there are many unlabeled data while no or small amount of
labeled data

when the number of samples per class is small (overfitting problem of LDA)
when the number of the desired features is more than C — 1

when the training data non-uniformly sample the underlying
distribution

» Semi-supervised feature extraction
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E.g., PCA+LDA, Regularized LDA, Locally FDA (LFDA)



PCA: Summary

Global optimum is found by eigenvector method
No parameter tuning
However, it is limited to:

using second order statistics
limited to linear projections
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Resources

C. Bishop, “Pattern Recognition and Machine Learning”,
Chapter 12,
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